An association between BPDE-like DNA adduct levels and P53 gene mutation in pterygium.

نویسندگان

  • Te-Jen Lai
  • Yi-Yu Tsai
  • Ya-Wen Cheng
  • Chun-Chi Chiang
  • Huei Lee
  • Ming-Chih Chou
  • Julia Hueimei Chang
چکیده

PURPOSE A previous report of ours noted that not only p53 protein overexpression, but also p53 gene mutation. were indeed detected in pterygium. BaP 7,8-diol 9,10-epoxide (BPDE), an ultimate metabolite of BaP, attacks deoxyguanosine to form a BPDE-N2-dG adduct resulting in p53 mutations. The relationship between BPDE-like DNA adduct levels and abnormal p53 has not been clear in pterygium. Therefore, BPDE-like DNA adduct, p53 protein expression and p53 gene mutation were examined in this study to provide more molecular evidence to understand the cause of p53 gene mutation in pterygium. METHODS In this study, immunohistochemical staining, using a monoclonal antibody (DO7) against p53 and a polyclonal antibody against BPDE-like DNA adducts, was performed on 73 pterygial specimens. DNA samples for p53 mutation analysis were extracted from epithelial cells and then subjected to DNA sequencing for the determination of mutations in exons 4, 5, 6, 7, and 8 of the p53 gene. RESULTS BPDE-like DNA adducts were detected in 36.1% (26/73) pterygium samples. No correlation between adduct levels and p53 protein expression was found in these samples. Additionally, the p53 gene mutation and p53 mutation pattern also did not correlate with BPDE-like DNA adduct levels. CONCLUSIONS Our data provides evidence that BPDE-like DNA adducts are indeed detected in pterygium samples, and they are only minor contributors to the abnormal p53 gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An association between BPDE-like DNA adduct levels and CYP1A1 and GSTM1 polymorphisma in pterygium

PURPOSE Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), an ultimate metabolite of benzo[a]pyrene, attacks deoxyguanosine to form a BPDE-N2-dG adduct resulting in p53 mutations. Both cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) have been demonstrated to be involved in the metabolism of polycyclic aromatic hydrocarbons. The relationship between BPDE-like DNA adduct levels and...

متن کامل

CYP1A1 gene polymorphisms as a risk factor for pterygium

PURPOSE Both cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) have been demonstrated to be involved in the metabolism of polycyclic aromatic hydrocarbons (PAHs). BaP 7,8-diol 9,10-epoxide (BPDE), an ultimate metabolite of benzo(a)pyrene (BaP), attacks deoxyguanosine to form a BPDE-N2-dG adduct resulting in p53 gene mutations. Our previous report indicated that BPDE-like DNA ...

متن کامل

CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with aromatic/hydrophobic adduct formation.

Benzo[a]pyrene diol epoxide (BPDE)-DNA adducts are involved in the induction of p53 mutations and probably in the causation of human lung cancer associated with cigarette smoking. The ratio between CYP1A1 and GST enzyme activities is a critical determinant of the target dose of carcinogenic BPDE and other DNA-reactive PAH metabolites. In this review, we summarize the published data on modulatio...

متن کامل

Identification through microarray gene expression analysis of cellular responses to benzo(a)pyrene and its diol-epoxide that are dependent or independent of p53.

Human colon carcinoma cells (HCT116) differing in p53 status were exposed to benzo(a)pyrene (BaP) or anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) and their gene expression responses compared by complementary DNA microarray technology. Exposure of cells to BPDE for up to 24 h resulted in gene expression profiles more distinguishable by duration of exposure than by p53 status, al...

متن کامل

p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells.

The global genomic repair of DNA adducts formed by the human carcinogen (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) has been studied by 32P-postlabeling in human fibroblasts in which p53 expression can be regulated. At low BPDE adduct levels (10-50 adducts/10(8) nucleotides), repair was rapid and essentially complete within 24 h in p53+ cells, whereas no repair was detected within 72...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular vision

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006